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Cer ta in  poss ib i l i t i es  of using the invers ion t r ans fo rma t ion  for  modeling p rob l ems  of the 
theory  of e las t ic i ty  and p las t ic i ty  a r e  considered,  in pa r t i cu la r ,  for cases  where  this al lows 
us to make the expe r imen ta l  investigation on the model cons iderably  e a s i e r  to c a r r y  out. 

The invariance of the biharmonie equation relative to inversion [I] was investigated by Michell [2] in 
the analysis of the first fundamental problem of the plane theory of elasticity~ He showed that the inversion 
transformation "translates" any such problem for any particular body into another problem of the same 
physical type, but already for another body with another load. Here it is very important that the quantities 
which for the solution of the new problem must be known - the contour of the body and the conditions onthe 
contou ; (i.e., loads) - are simply expressed in terms of the quantities specified when solving the original 
problem (loads, with accuracy up to the hydrostatic compression). Therefore inversion can be used for 
modeling. The situation in the problem concerned with the static flexure of a slab is analogous [3, 4]. 

Here we note that inversion can be used for modeling certain other problems of the theory of elastic- 
ity and plasticity which reduce to a biharmonie equation with a right side, and namely for modeling theplane 
thermoelastie stationary problem, when heat emission is specified in the body and the contour of the body 
is free from fixing; it can also be used for the problem concerned with the dynamic flexure of a homogene- 
ous elastic slab resting on an inhomogeneous elastic-plastic foundation of the Winkler type. The mass of 
the slab is an arbitrary function of the point. Conditions of the "kinematic type" are specified on the con- 
tour~ 

In addition, inversion can be used in the case of the plane first fundamental isothermal problem for a 
linearly viscoelastic body and the case of the problem concerned with the dynamic flexure of a slab on a 
solid foundation, when the material of the slab possesses linear viscoelasticity and the material of the foun- 
dation has arbitrary nonlinear viscoelasticity. It can be used in these two problems when the material pos- 
sesses circular orthotropy (the equation is no longer biharmonic) as well as in certain other problems. 

In all problems the region is considered to be finite, while in the case of plane problems, for the sake 
of simplicity, it is assumed to be simply connected. In other respects the outline of the body or slab as 
well as the boundary conditions (in the framework of the types being considered) can be arbitrary. We as- 
sume that the center of the inversion circle lies outside the region occupied by the body. In the case of 
circular orthotropy it coincides with the center of orthotropy. 

In the orthonormed x, y coordinate system the thermoelastic problem and the problem of slab flexure 
are described by the equations 

~E V~ 
~ (I -- I0 e (1) 
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Fig. I 

0 ~  , t*=~ (2)  D V ~ w = q ~ p ~  + p[w(t )It*=0 

Here ~ is the Airy function; ~, E, k, ~ are  constants;  e(x, y) is the 
specified intensity of heat emiss ion  per  unit volume; D is the r igidi ty of 
the slab; w is the deflection; q (x, y, t) is the t r ansve r se  load (a function 
to be given); p(x, y) is the mass per  unit a rea  of the middle surface {a 
function to be given); p is the react ive  load acting on the slab from the 
side of the foundation; and p I l~:~_~ is the opera tor  placing the function 

p(t) into correspondence with the function w(t). This operator  cha rac te r i zes  the e las t ic -p las t ic  proper t ies  
of the foundation and is a given function of x, y. F r o m  the foundation we demand only that it can be de- 
sc r ibedby  a "point" opera tor .  Thus, (2) descr ibes  the flexure of the slab on an e las t ic-plas t ic  foundation 
of a very  a rb i t r a ry  type. In the case of a l inearly elast ic foundation p : c(x, y) w, where c(x, y) is a neg-  
ative "constant." We note that the opera tor  p[ ] can descr ibe  not only the tradit ional  solid foundation - 
the ground - but also either damping effect of the mater ia l  of the slab itself or  the "point" res i s tance  of 
any external  medium. 

The inverse t r ans fo rm 

x = Xo/(Xo ~ "~ yo~), y = yo/(Xo ~ + yo ~) (3) 

can be used to model the problems (1) and (2). Indeed, substituting in (1) and (2) instead of x and y their  
express ions  in t e rms  of x 0 and Y0 accordIng to (3) and instead of ~ and w 

(p (x,  y)  = (pO(Xo, yo)/(xo 2 + yo2), w (x,  y ,  t) = w o (Xo, Yo, t)/(xo ~ i +  Yo 2) (4) 

we a r r ive  at equations of the previous physical  type but a l ready with the "new" e 0 (xo, Yo), qo (Xo, Yo, t), 
Po (Xo, Yo), Po[ ]. At the corresponding points 

eo = e / ( ~ J  + ud )  ~ (5) 

% = q/(xo 2 + YoD 3 (6) 

0o = P / ( ~ d  + yo2) ~ (7) 

poiwo, t*=t t i wo(t*)]t*=t (t)b*=0- (~0~ + y0-~) 3 P ~0~-~0 ~ t*=o (8) 

The boundary and initial conditions of the new problems are  simply expressed in t e rms  of the condi- 
tions of the original  problems (in the case of the plane problem, with accuracy  up to the hydrostat ic  com-  
pression) .  

Thus, if we a re  given a problem of type (1) or (2), then on the basis of (3)-(8) we can choose any of 
the " inversion" bodies, obtain the solution (mathematical ,  experimental ,  or  mixed), and t ransla te  the resu l t s  
to the original  body. In par t icu lar  cases  a body with nonuniform heat emiss ion or a plate with a nonuniform 
mass and inhomogeneous foundation can be reduced to models with the constant e o, Po, and Po [ ]. Let, for 
example, it be neces sa ry  to determIne the natural  frequencies and natural  modes of vibrat ion of a slab (Fig. 
la) with p = 1 / (x  2 +y2)4. After inversion we a r r ive  at the problem for a plate (Fig. lb) with Po = const, on 
which it is easy to ca r ry  out an experiment .  Alternatively,  let the slab In Fig. l a  have an Inhomogeneous 
nonlinearly elast ic foundation with the charac te r i s t i c  

, ( w  ) 
p (w) - (x~ + yD~ / x2 + y~ 

where f (  ) is an a rb i t r a ry  function of its argument .  After inversion we a r r ive  at the problem for the slab 
(Fig. lb) with a homogeneous foundation p0(w0) =f(w0). In the case of v iscoelas t ic i ty  the proof  is analogous. 

The fact  mentioned in the paper that inversion can be used to model the  problems {1) and {2) is not 
tr ivial ,  since there  are  a multitude of problems with equations which are  close to {1) and (2), which when in- 
verted "lose" their  physical  type (for example, the problem of slab stability) and a multitude of problems 
which, although "preserving"  their physical  type, have boundary conditions that a re  not t r ans fo rmed  into 
one another in the inversion t ransformat ion  (for example, the same problem (2), but with "solid" boundary 
conditions). In the lat ter  it is also impossible to use inversion for modeling since up to the solution of the 
original  problem we do not know the boundary conditions in the model. 
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We consider  the case  of ma te r i a l s  possess ing  c i r cu l a r  or thotropy.  The contour of the body or  slab 
and the boundary conditions can, let it be understood,  p o s s e s s  no c i rcu la r  s y m m e t r y .  Since the equations 
a r e  of the same  type, we wri te  only the equation of plate f lexure [5]: 

a4w 1 04~w i O~w t Osw t a3w 
D, 0-'ff~i--t-2Dre r 2 OrSO82 -lr" Do "~" ~ "l- 2Dr - ' ~ ' ~ r ~  - -  2Dr~ r ~ Orc3O~ 

t 02w t Ow O~w t*--t 
1 02{0 -b2(D0-~Dr0) r 4 0(}' +Do r~ Or : q - - P ~  2r-p[w(t*)]r176 ~ D o  r s Or ~ 

(9) 

Here  r ,  0 a r e  the polar  coordinates ,  Dr,  DO, and Dr0 a r e  other  constants  wr i t ten  in t e r m s  of local  
o r thonormed  bases .  The t r ans fo rma t ion  (3), (4) does not change the fo rm of Eq. (9) [the r ight  side is a l t e red  
according  to (6)-(8)]. We note that  an equation of the type (9) would be invar iant  re la t ive  to (3), (4) a lso  in 
the case  where  its left  side contains not th ree  but five independent constant  coefficients  (for all  fourth and 
second der iva t ives) .  

The boundary conditions in the p rob l ems  being considered,  coinciding with the conditions in the ease  
of i sot ropic  bodies,  a r e  s imply  t r ans fo rmed .  The re fo re  invers ion can be used for  modeling. 
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